پروژه جامع کاهش_ابعاد

2,000 تومان

در این محصول نمونه ای از کدنویسی کاهش ابعاد در محیط متلب ارائه شده است .

پروژه جامع کاهش_ابعاد

در این محصول نمونه ای از کدنویسی کاهش ابعاد در محیط متلب ارائه شده است

تفسیر داده‌های دارای ابعاد بالا ٬ یعنی داده‌هایی که نیاز به بیش از ۲ یا ۳ بعد برای نمایش داده‌شدن دارند٬ دشوار است. یک راه برای ساده‌سازی این است که فرض کنیم داده‌ها روی یک خمینه غیرخطی نهفته در فضای مورد نظر قرار دارند. اگر بعد خمینه به مقدار کافی کم باشد٬ داده‌ها را می‌توان در این فضای با ابعاد پایین‌تر نشان داد.

بسیاری از الگوریتم‌های کاهش غیرخطی ابعاد با روش‌های خطی زیر ارتباط دارند:

  • تحلیل مؤلفه‌های مستقل (ICA)
  • تحلیل مؤلفه‌های اصلی (PCA)
  • تجزیه مقدارهای منفرد (SVD)
  • آنالیز عامل‌ها (Factor Analysis)

روش‌های غیرخطی را می‌توان به دو دسته عمده تقسیم کرد:

آن‌هایی که یک نگاشت (از فضای با ابعاد بالاتر به خمینهٔ نهفته با ابعاد پایین‌تر با برعکس)(mapping)هستند ٬ و آن‌هایی که تنها یک نمایش از داده‌ها ارائه می‌کنند. در زمینهٔ یادگیری ماشینی ٬ روش‌های نگاشت به عنوان مرحلهٔ استخراج ویژگی ٬ پیش از اعمال الگوریتم‌های شناسایی الگو استفاده می‌شوند. آن‌هایی که یک نمایش از داده‌ها ارائه می‌کنند ٬ بر اساس داده‌های مجاورت ـ فاصله بین نقاط) ـ هستند.

تقلیل ابعاد یا فروکاهی ابعاد (Dimension reduction) به فرایند کاستن و کم‌کردن از تعداد ابعاد و متغیرهای مورد نیاز برای نمایش و بررسی مسائل مطروحه در ریاضیات، آمار، فیزیک، مهندسی، و بسیاری از شاخه‌های علوم محاسباتی و پیچیدهٔ نوین اطلاق می‌شود.

در ادبیات تحلیل‌های چند متغیری اساسا به روش‌هایی که برای کاهش ابعاد استفاده می‌شود، روش‌های محوری یا روش‌های هندسی گفته می‌شود. کاهش ابعاد به دو دسته انتخاب ویژگی و استخراج ویژگی تقسیم می‌شود. در انتخاب ویژگی که در فضای اندازه‌گیری انجام می‌شود هدف پیدا کردن ویژگی‌های مطلوب از بین کل ویژگی‌های موجود است در حالی در استخراج ویژگی هدف انتقال ویژگی‌های انتخاب شده از فضای با ابعاد بیشتر به فضای با ابعاد کمتر و تعداد متغیرهای کمتر می‌باشد.

دیدگاهها

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “پروژه جامع کاهش_ابعاد”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *